Nuprl Lemma : Sierpinski-unequal

¬(⊥ = ⊤ ∈ Sierpinski)


Proof




Definitions occuring in Statement :  Sierpinski: Sierpinski Sierpinski-top: Sierpinski-bottom: not: ¬A equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q and: P ∧ Q not: ¬A implies:  Q Sierpinski: Sierpinski quotient: x,y:A//B[x; y] false: False cand: c∧ B member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  Sierpinski-unequal-1 and_wf member_wf nat_wf bool_wf Sierpinski-bottom_wf Sierpinski-top_wf iff_wf equal_wf Sierpinski_wf subtype-Sierpinski
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin lambdaFormation sqequalRule pertypeElimination independent_functionElimination equalityTransitivity hypothesis equalitySymmetry voidElimination isectElimination functionEquality applyEquality

Latex:
\mneg{}(\mbot{}  =  \mtop{})



Date html generated: 2019_10_31-AM-06_35_32
Last ObjectModification: 2015_12_28-AM-11_22_00

Theory : synthetic!topology


Home Index