Nuprl Lemma : Sierpinski-unequal
¬(⊥ = ⊤ ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
Sierpinski: Sierpinski, 
Sierpinski-top: ⊤, 
Sierpinski-bottom: ⊥, 
not: ¬A, 
equal: s = t ∈ T
Definitions unfolded in proof : 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
Sierpinski: Sierpinski, 
quotient: x,y:A//B[x; y], 
false: False, 
cand: A c∧ B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B
Lemmas referenced : 
Sierpinski-unequal-1, 
and_wf, 
member_wf, 
nat_wf, 
bool_wf, 
Sierpinski-bottom_wf, 
Sierpinski-top_wf, 
iff_wf, 
equal_wf, 
Sierpinski_wf, 
subtype-Sierpinski
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
lambdaFormation, 
sqequalRule, 
pertypeElimination, 
independent_functionElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
voidElimination, 
isectElimination, 
functionEquality, 
applyEquality
Latex:
\mneg{}(\mbot{}  =  \mtop{})
 Date html generated: 
2019_10_31-AM-06_35_32
 Last ObjectModification: 
2015_12_28-AM-11_22_00
Theory : synthetic!topology
Home
Index