Nuprl Lemma : sp-le_transitivity

[x,y,z:Sierpinski].  (x ≤  y ≤  x ≤ z)


Proof




Definitions occuring in Statement :  sp-le: x ≤ y Sierpinski: Sierpinski uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  sp-le: x ≤ y uall: [x:A]. B[x] member: t ∈ T implies:  Q prop:
Lemmas referenced :  equal-wf-T-base Sierpinski_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution independent_functionElimination thin hypothesis extract_by_obid isectElimination hypothesisEquality baseClosed functionEquality because_Cache lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[x,y,z:Sierpinski].    (x  \mleq{}  y  {}\mRightarrow{}  y  \mleq{}  z  {}\mRightarrow{}  x  \mleq{}  z)



Date html generated: 2019_10_31-AM-06_36_11
Last ObjectModification: 2017_07_28-AM-09_12_06

Theory : synthetic!topology


Home Index