Nuprl Lemma : ml-accumulate_wf

[A,B:Type].
  (∀[f:B ⟶ A ⟶ B]. ∀[l:A List]. ∀[b:B].  (ml-accumulate(f;b;l) ∈ B)) supposing 
     ((valueall-type(A) ∧ A) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  ml-accumulate: ml-accumulate(f;b;l) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q
Lemmas referenced :  ml-accumulate-sq list_accum_wf list_wf valueall-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule cumulativity lambdaEquality applyEquality functionExtensionality productElimination functionEquality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry productEquality universeEquality

Latex:
\mforall{}[A,B:Type].
    (\mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].  \mforall{}[b:B].    (ml-accumulate(f;b;l)  \mmember{}  B))  supposing 
          ((valueall-type(A)  \mwedge{}  A)  and 
          valueall-type(B))



Date html generated: 2017_09_29-PM-05_51_04
Last ObjectModification: 2017_05_10-PM-06_58_51

Theory : ML


Home Index