Nuprl Lemma : ml-accumulate_wf
∀[A,B:Type].
  (∀[f:B ⟶ A ⟶ B]. ∀[l:A List]. ∀[b:B].  (ml-accumulate(f;b;l) ∈ B)) supposing 
     ((valueall-type(A) ∧ A) and 
     valueall-type(B))
Proof
Definitions occuring in Statement : 
ml-accumulate: ml-accumulate(f;b;l)
, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
Lemmas referenced : 
ml-accumulate-sq, 
list_accum_wf, 
list_wf, 
valueall-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
cumulativity, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
productElimination, 
functionEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    (\mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].  \mforall{}[b:B].    (ml-accumulate(f;b;l)  \mmember{}  B))  supposing 
          ((valueall-type(A)  \mwedge{}  A)  and 
          valueall-type(B))
Date html generated:
2017_09_29-PM-05_51_04
Last ObjectModification:
2017_05_10-PM-06_58_51
Theory : ML
Home
Index