Nuprl Lemma : ml-accumulate-sq

[A,B:Type].
  (∀[f:B ⟶ A ⟶ B]. ∀[l:A List]. ∀[b:B].
     (ml-accumulate(f;b;l) accumulate (with value and list item a):
                              a
                             over list:
                               l
                             with starting value:
                              b))) supposing 
     ((valueall-type(A) ∧ A) and 
     valueall-type(B))


Proof




Definitions occuring in Statement :  ml-accumulate: ml-accumulate(f;b;l) list_accum: list_accum list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q ml-accumulate: ml-accumulate(f;b;l) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ml_apply: f(x) spreadcons: spreadcons callbyvalueall: callbyvalueall evalall: evalall(t) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] squash: T has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m sq_type: SQType(T) less_than: a < b bfalse: ff
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases list_accum_nil_lemma function-value-type valueall-type-value-type function-valueall-type valueall-type-has-valueall evalall-reduce null_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_accum_cons_lemma list_wf list-valueall-type cons_wf null_cons_lemma valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom cumulativity productElimination applyEquality because_Cache unionElimination voidEquality callbyvalueReduce sqleReflexivity independent_pairFormation imageMemberEquality baseClosed functionEquality promote_hyp hypothesis_subsumption applyLambdaEquality imageElimination addEquality dependent_set_memberEquality minusEquality equalityTransitivity equalitySymmetry intEquality instantiate functionExtensionality productEquality universeEquality

Latex:
\mforall{}[A,B:Type].
    (\mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].  \mforall{}[b:B].
          (ml-accumulate(f;b;l)  \msim{}  accumulate  (with  value  v  and  list  item  a):
                                                            f  v  a
                                                          over  list:
                                                              l
                                                          with  starting  value:
                                                            b)))  supposing 
          ((valueall-type(A)  \mwedge{}  A)  and 
          valueall-type(B))



Date html generated: 2017_09_29-PM-05_51_03
Last ObjectModification: 2017_05_10-PM-06_57_47

Theory : ML


Home Index