Nuprl Lemma : ml-accumulate-sq
∀[A,B:Type].
  (∀[f:B ⟶ A ⟶ B]. ∀[l:A List]. ∀[b:B].
     (ml-accumulate(f;b;l) ~ accumulate (with value v and list item a):
                              f v a
                             over list:
                               l
                             with starting value:
                              b))) supposing 
     ((valueall-type(A) ∧ A) and 
     valueall-type(B))
Proof
Definitions occuring in Statement : 
ml-accumulate: ml-accumulate(f;b;l)
, 
list_accum: list_accum, 
list: T List
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
ml-accumulate: ml-accumulate(f;b;l)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
ml_apply: f(x)
, 
spreadcons: spreadcons, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
colength: colength(L)
, 
sq_stable: SqStable(P)
, 
uiff: uiff(P;Q)
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
bfalse: ff
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
list-cases, 
list_accum_nil_lemma, 
function-value-type, 
valueall-type-value-type, 
function-valueall-type, 
valueall-type-has-valueall, 
evalall-reduce, 
null_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-commutes, 
le_wf, 
equal_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
list_accum_cons_lemma, 
list_wf, 
list-valueall-type, 
cons_wf, 
null_cons_lemma, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
sqequalAxiom, 
cumulativity, 
productElimination, 
applyEquality, 
because_Cache, 
unionElimination, 
voidEquality, 
callbyvalueReduce, 
sqleReflexivity, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
functionEquality, 
promote_hyp, 
hypothesis_subsumption, 
applyLambdaEquality, 
imageElimination, 
addEquality, 
dependent_set_memberEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
instantiate, 
functionExtensionality, 
productEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    (\mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].  \mforall{}[l:A  List].  \mforall{}[b:B].
          (ml-accumulate(f;b;l)  \msim{}  accumulate  (with  value  v  and  list  item  a):
                                                            f  v  a
                                                          over  list:
                                                              l
                                                          with  starting  value:
                                                            b)))  supposing 
          ((valueall-type(A)  \mwedge{}  A)  and 
          valueall-type(B))
Date html generated:
2017_09_29-PM-05_51_03
Last ObjectModification:
2017_05_10-PM-06_57_47
Theory : ML
Home
Index