Nuprl Lemma : ml-length_wf
∀[T:Type]. ∀[l:T List]. (ml-length(l) ∈ ℕ) supposing valueall-type(T)
Proof
Definitions occuring in Statement : 
ml-length: ml-length(l)
, 
list: T List
, 
nat: ℕ
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
ml-length-sq, 
length_wf_nat, 
list_wf, 
valueall-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
cumulativity, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  (ml-length(l)  \mmember{}  \mBbbN{})  supposing  valueall-type(T)
Date html generated:
2017_09_29-PM-05_50_54
Last ObjectModification:
2017_05_10-PM-05_13_20
Theory : ML
Home
Index