Nuprl Lemma : ml-length_wf

[T:Type]. ∀[l:T List]. (ml-length(l) ∈ ℕsupposing valueall-type(T)


Proof




Definitions occuring in Statement :  ml-length: ml-length(l) list: List nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  ml-length-sq length_wf_nat list_wf valueall-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule cumulativity isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  (ml-length(l)  \mmember{}  \mBbbN{})  supposing  valueall-type(T)



Date html generated: 2017_09_29-PM-05_50_54
Last ObjectModification: 2017_05_10-PM-05_13_20

Theory : ML


Home Index