Nuprl Lemma : ml-prodmap_wf

[T,A,B:Type].
  ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].  (ml-prodmap(f;as;bs) ∈ List) 
  supposing valueall-type(T) ∧ valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B


Proof




Definitions occuring in Statement :  ml-prodmap: ml-prodmap(f;as;bs) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B prop:
Lemmas referenced :  ml-prodmap-sq eager-product-map_wf valueall-type-value-type list_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality independent_isectElimination hypothesis independent_pairFormation cumulativity functionExtensionality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality productEquality universeEquality

Latex:
\mforall{}[T,A,B:Type].
    \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (ml-prodmap(f;as;bs)  \mmember{}  T  List) 
    supposing  valueall-type(T)  \mwedge{}  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B



Date html generated: 2017_09_29-PM-05_51_18
Last ObjectModification: 2017_05_19-PM-05_38_02

Theory : ML


Home Index