Nuprl Lemma : ml-prodmap-sq

[T,A,B:Type].
  ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].  (ml-prodmap(f;as;bs) eager-product-map(f;as;bs)) 
  supposing valueall-type(T) ∧ valueall-type(A) ∧ valueall-type(B) ∧ A ∧ B


Proof




Definitions occuring in Statement :  ml-prodmap: ml-prodmap(f;as;bs) eager-product-map: eager-product-map(f;as;bs) list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: and: P ∧ Q subtype_rel: A ⊆B or: P ∨ Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] squash: T ml-prodmap: ml-prodmap(f;as;bs) top: Top ifthenelse: if then else fi  btrue: tt eager-product-map: eager-product-map(f;as;bs) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m nil: [] it: sq_type: SQType(T) less_than: a < b bfalse: ff spreadcons: spreadcons cand: c∧ B
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf list_wf equal-wf-T-base nat_wf colength_wf_list list-cases function-value-type valueall-type-value-type ml_apply-sq list-valueall-type nil_wf void-valueall-type function-valueall-type null_nil_lemma list_ind_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base cons_wf null_cons_lemma list_ind_cons_lemma valueall-type_wf ml_apply_wf eager-product-map_wf ml-maprevappend-sq eager-map-append-sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom cumulativity productElimination applyEquality because_Cache unionElimination independent_pairFormation imageMemberEquality baseClosed voidEquality functionEquality promote_hyp hypothesis_subsumption applyLambdaEquality imageElimination addEquality dependent_set_memberEquality minusEquality equalityTransitivity equalitySymmetry intEquality instantiate productEquality universeEquality functionExtensionality

Latex:
\mforall{}[T,A,B:Type].
    \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].    (ml-prodmap(f;as;bs)  \msim{}  eager-product-map(f;as;bs)) 
    supposing  valueall-type(T)  \mwedge{}  valueall-type(A)  \mwedge{}  valueall-type(B)  \mwedge{}  A  \mwedge{}  B



Date html generated: 2017_09_29-PM-05_51_18
Last ObjectModification: 2017_05_19-PM-05_28_36

Theory : ML


Home Index