Nuprl Lemma : ml_apply_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[x:A].  f(x) ∈ supposing valueall-type(A)


Proof




Definitions occuring in Statement :  ml_apply: f(x) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ml_apply: f(x) callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)
Lemmas referenced :  valueall-type-has-valueall evalall-reduce valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis callbyvalueReduce because_Cache applyEquality functionExtensionality cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x:A].    f(x)  \mmember{}  B  supposing  valueall-type(A)



Date html generated: 2017_09_29-PM-05_50_49
Last ObjectModification: 2017_05_08-PM-02_14_45

Theory : ML


Home Index