Nuprl Lemma : ml_apply_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[x:A].  f(x) ∈ B supposing valueall-type(A)
Proof
Definitions occuring in Statement : 
ml_apply: f(x)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ml_apply: f(x)
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
Lemmas referenced : 
valueall-type-has-valueall, 
evalall-reduce, 
valueall-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
callbyvalueReduce, 
because_Cache, 
applyEquality, 
functionExtensionality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[x:A].    f(x)  \mmember{}  B  supposing  valueall-type(A)
Date html generated:
2017_09_29-PM-05_50_49
Last ObjectModification:
2017_05_08-PM-02_14_45
Theory : ML
Home
Index