Nuprl Lemma : ml-maprevappend-sq

[T,A:Type]. ∀[f:A ⟶ T].
  ∀[as:A List]. ∀[bs:T List].  (ml-maprevappend(f;as;bs) map(f;rev(as)) bs) 
  supposing valueall-type(T) ∧ valueall-type(A) ∧ A


Proof




Definitions occuring in Statement :  ml-maprevappend: ml-maprevappend(f;as;bs) reverse: rev(as) map: map(f;as) append: as bs list: List valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] squash: T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: subtype_rel: A ⊆B or: P ∨ Q ml-maprevappend: ml-maprevappend(f;as;bs) top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ml_apply: f(x) callbyvalueall: callbyvalueall evalall: evalall(t) nil: [] it: has-value: (a)↓ has-valueall: has-valueall(a) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sq_stable: SqStable(P) uiff: uiff(P;Q) le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m sq_type: SQType(T) less_than: a < b spreadcons: spreadcons bfalse: ff
Lemmas referenced :  function-valueall-type valueall-type-value-type list_wf valueall-type_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list list-cases reverse_nil_lemma map_nil_lemma list_ind_nil_lemma valueall-type-has-valueall list-valueall-type evalall-reduce null_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes le_wf equal_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base cons_wf null_cons_lemma reverse-cons map_append_sq append_assoc map_cons_lemma list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalRule isect_memberEquality sqequalAxiom cut thin sqequalHypSubstitution productElimination extract_by_obid isectElimination hypothesisEquality lambdaEquality cumulativity independent_isectElimination rename independent_pairFormation hypothesis imageMemberEquality baseClosed dependent_functionElimination productEquality because_Cache functionEquality universeEquality lambdaFormation setElimination intWeakElimination natural_numberEquality independent_functionElimination voidElimination applyEquality unionElimination voidEquality callbyvalueReduce sqleReflexivity promote_hyp hypothesis_subsumption applyLambdaEquality imageElimination addEquality dependent_set_memberEquality minusEquality equalityTransitivity equalitySymmetry intEquality instantiate functionExtensionality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T].
    \mforall{}[as:A  List].  \mforall{}[bs:T  List].    (ml-maprevappend(f;as;bs)  \msim{}  map(f;rev(as))  @  bs) 
    supposing  valueall-type(T)  \mwedge{}  valueall-type(A)  \mwedge{}  A



Date html generated: 2017_09_29-PM-05_51_13
Last ObjectModification: 2017_05_19-PM-03_23_32

Theory : ML


Home Index