Nuprl Lemma : ml_insert_int_wf

[l:ℤ List]. ∀[x:ℤ].  (ml_insert_int(x;l) ∈ ℤ List)


Proof




Definitions occuring in Statement :  ml_insert_int: ml_insert_int(x;l) list: List uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a
Lemmas referenced :  ml_insert_int-sq insert-int_wf subtype_rel_self list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality independent_isectElimination because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[l:\mBbbZ{}  List].  \mforall{}[x:\mBbbZ{}].    (ml\_insert\_int(x;l)  \mmember{}  \mBbbZ{}  List)



Date html generated: 2017_09_29-PM-05_51_21
Last ObjectModification: 2017_05_11-PM-03_25_29

Theory : ML


Home Index