Nuprl Lemma : nat-mul-absval
∀[n:ℕ]. ∀[x:ℤ].  ((n * |x|) = |n * x| ∈ ℤ)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
squash: ↓T
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
istype-int, 
absval_pos, 
iff_weakening_equal, 
absval_mul, 
absval_wf, 
equal_wf
Rules used in proof : 
isectIsTypeImplies, 
axiomEquality, 
isect_memberEquality_alt, 
independent_functionElimination, 
productElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
hypothesisEquality, 
rename, 
setElimination, 
multiplyEquality, 
intEquality, 
hypothesis, 
because_Cache, 
isectElimination, 
extract_by_obid, 
imageElimination, 
sqequalHypSubstitution, 
lambdaEquality_alt, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x:\mBbbZ{}].    ((n  *  |x|)  =  |n  *  x|)
Date html generated:
2019_10_15-AM-10_19_42
Last ObjectModification:
2019_10_10-PM-00_20_17
Theory : arithmetic
Home
Index