Nuprl Lemma : seq-settype
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[s:sequence(T)].  s ∈ sequence({x:T| P[x]} ) supposing ∀i:ℕ||s||. (↓P[s[i]])
Proof
Definitions occuring in Statement : 
seq-item: s[i]
, 
seq-len: ||s||
, 
sequence: sequence(T)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
guard: {T}
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
nat: ℕ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
seq-len: ||s||
, 
seq-item: s[i]
, 
sequence: sequence(T)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
sequence_wf, 
seq-item_wf, 
squash_wf, 
nat_wf, 
seq-len_wf, 
all_wf, 
subtype_rel_self, 
int_seg_wf
Rules used in proof : 
dependent_functionElimination, 
dependent_set_memberEquality, 
imageElimination, 
universeEquality, 
isect_memberEquality, 
lambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
instantiate, 
applyEquality, 
cumulativity, 
setEquality, 
functionEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
functionExtensionality, 
hypothesisEquality, 
dependent_pairEquality, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[s:sequence(T)].    s  \mmember{}  sequence(\{x:T|  P[x]\}  )  supposing  \mforall{}i:\mBbbN{}||s||.  (\mdownarrow{}P[s[i]]\000C)
Date html generated:
2018_07_25-PM-01_29_31
Last ObjectModification:
2018_06_18-PM-06_55_01
Theory : arithmetic
Home
Index