Nuprl Lemma : seq-settype

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[s:sequence(T)].  s ∈ sequence({x:T| P[x]} supposing ∀i:ℕ||s||. (↓P[s[i]])


Proof




Definitions occuring in Statement :  seq-item: s[i] seq-len: ||s|| sequence: sequence(T) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] squash: T member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] guard: {T} squash: T so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B so_apply: x[s] nat: pi2: snd(t) pi1: fst(t) seq-len: ||s|| seq-item: s[i] sequence: sequence(T) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sequence_wf seq-item_wf squash_wf nat_wf seq-len_wf all_wf subtype_rel_self int_seg_wf
Rules used in proof :  dependent_functionElimination dependent_set_memberEquality imageElimination universeEquality isect_memberEquality lambdaEquality equalitySymmetry equalityTransitivity axiomEquality instantiate applyEquality cumulativity setEquality functionEquality hypothesis because_Cache rename setElimination natural_numberEquality isectElimination extract_by_obid functionExtensionality hypothesisEquality dependent_pairEquality sqequalRule thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[s:sequence(T)].    s  \mmember{}  sequence(\{x:T|  P[x]\}  )  supposing  \mforall{}i:\mBbbN{}||s||.  (\mdownarrow{}P[s[i]]\000C)



Date html generated: 2018_07_25-PM-01_29_31
Last ObjectModification: 2018_06_18-PM-06_55_01

Theory : arithmetic


Home Index