Nuprl Lemma : free-from-atom-outl2
∀[B,A:Type]. ∀[x:A + B]. ∀[a:Atom1].  (a#outl(x):A) supposing ((↑isl(x)) and a#x:A + B)
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
free-from-atom-outl, 
subtype_rel_union, 
top_wf, 
assert_wf, 
isl_wf, 
free-from-atom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
unionEquality, 
freeFromAtomAxiom, 
equalityTransitivity, 
equalitySymmetry, 
atomnEquality, 
universeEquality
Latex:
\mforall{}[B,A:Type].  \mforall{}[x:A  +  B].  \mforall{}[a:Atom1].    (a\#outl(x):A)  supposing  ((\muparrow{}isl(x))  and  a\#x:A  +  B)
Date html generated:
2016_05_13-PM-03_21_29
Last ObjectModification:
2015_12_26-AM-09_11_57
Theory : atom_1
Home
Index