Nuprl Lemma : free-from-atom-outl
∀[A:Type]. ∀[x:A + Top]. ∀[a:Atom1].  (a#outl(x):A) supposing ((↑isl(x)) and a#x:A + Top)
Proof
Definitions occuring in Statement : 
free-from-atom: a#x:T
, 
atom: Atom$n
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
outl: outl(x)
, 
bfalse: ff
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
assert_wf, 
isl_wf, 
top_wf, 
free-from-atom_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
unionElimination, 
thin, 
sqequalHypSubstitution, 
sqequalRule, 
rename, 
voidElimination, 
freeFromAtomAxiom, 
hypothesis, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
atomnEquality, 
universeEquality, 
inlEquality, 
freeFromAtomApplication, 
freeFromAtomTriviality, 
lambdaEquality, 
lambdaFormation, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity
Latex:
\mforall{}[A:Type].  \mforall{}[x:A  +  Top].  \mforall{}[a:Atom1].    (a\#outl(x):A)  supposing  ((\muparrow{}isl(x))  and  a\#x:A  +  Top)
Date html generated:
2019_06_20-AM-11_20_23
Last ObjectModification:
2018_08_21-PM-01_52_35
Theory : atom_1
Home
Index