Nuprl Lemma : Wqo_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (Wqo(T;x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  Wqo: Wqo(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Wqo: Wqo(T;x,y.R[x; y]) prop: and: P ∧ Q so_lambda: λ2x.t[x] nat: so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] all: x:A. B[x] implies:  Q
Lemmas referenced :  all_wf nat_wf squash_wf exists_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis cumulativity hypothesisEquality lambdaEquality because_Cache setElimination rename applyEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (Wqo(T;x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_53_08
Last ObjectModification: 2015_12_26-AM-10_16_54

Theory : bar-induction


Home Index