Nuprl Lemma : bounded-type_wf

[T:Type]. (Bounded(T) ∈ ℙ)


Proof




Definitions occuring in Statement :  bounded-type: Bounded(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  so_apply: x[s] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] all: x:A. B[x] prop: bounded-type: Bounded(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe istype-nat le_wf sq_exists_wf nat_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality rename setElimination applyEquality lambdaEquality_alt thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid hypothesisEquality functionEquality sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  (Bounded(T)  \mmember{}  \mBbbP{})



Date html generated: 2019_10_15-AM-10_20_06
Last ObjectModification: 2019_10_07-PM-04_38_48

Theory : bar-induction


Home Index