Nuprl Lemma : bounded-type_wf
∀[T:Type]. (Bounded(T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
bounded-type: Bounded(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
bounded-type: Bounded(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
istype-nat, 
le_wf, 
sq_exists_wf, 
nat_wf
Rules used in proof : 
universeEquality, 
instantiate, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
rename, 
setElimination, 
applyEquality, 
lambdaEquality_alt, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
hypothesisEquality, 
functionEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (Bounded(T)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_15-AM-10_20_06
Last ObjectModification:
2019_10_07-PM-04_38_48
Theory : bar-induction
Home
Index