Nuprl Lemma : power-set-lift_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (power-set-lift(T;R) ∈ P(T) ⟶ P(T) ⟶ ℙ)


Proof




Definitions occuring in Statement :  power-set-lift: power-set-lift(T;R) power-set: P(T) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T power-set-lift: power-set-lift(T;R) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf set-member_wf exists_wf and_wf power-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionEquality hypothesis applyEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (power-set-lift(T;R)  \mmember{}  P(T)  {}\mrightarrow{}  P(T)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_51_40
Last ObjectModification: 2015_12_26-AM-10_17_09

Theory : bar-induction


Home Index