Nuprl Lemma : power-set-lift_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (power-set-lift(T;R) ∈ P(T) ⟶ P(T) ⟶ ℙ)
Proof
Definitions occuring in Statement : 
power-set-lift: power-set-lift(T;R)
, 
power-set: P(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
power-set-lift: power-set-lift(T;R)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
set-member_wf, 
exists_wf, 
and_wf, 
power-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (power-set-lift(T;R)  \mmember{}  P(T)  {}\mrightarrow{}  P(T)  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_51_40
Last ObjectModification:
2015_12_26-AM-10_17_09
Theory : bar-induction
Home
Index