Nuprl Lemma : weakly-infinite_wf

[S:ℕ ⟶ ℙ]. (w∃∞x.S[x] ∈ ℙ)


Proof




Definitions occuring in Statement :  weakly-infinite: w∃∞p.S[p] nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weakly-infinite: w∃∞p.S[p] so_lambda: λ2x.t[x] nat: so_apply: x[s] prop:
Lemmas referenced :  all_wf nat_wf not_wf exists_wf and_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality setElimination rename hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[S:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (w\mexists{}\minfty{}x.S[x]  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_49_52
Last ObjectModification: 2015_12_26-AM-10_17_39

Theory : bar-induction


Home Index