Nuprl Lemma : weakly-infinite_wf
∀[S:ℕ ⟶ ℙ]. (w∃∞x.S[x] ∈ ℙ)
Proof
Definitions occuring in Statement : 
weakly-infinite: w∃∞p.S[p]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
weakly-infinite: w∃∞p.S[p]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
all_wf, 
nat_wf, 
not_wf, 
exists_wf, 
and_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[S:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (w\mexists{}\minfty{}x.S[x]  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_49_52
Last ObjectModification:
2015_12_26-AM-10_17_39
Theory : bar-induction
Home
Index