Nuprl Lemma : band_bor_absorption

[a,b:Top].  (a ∨b(a ∧b b) a ∧b tt)


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q btrue: tt uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bor: p ∨bq ifthenelse: if then else fi  btrue: tt it: band: p ∧b q bfalse: ff all: x:A. B[x] implies:  Q top: Top has-value: (a)↓ prop:
Lemmas referenced :  top_wf equal_wf has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality thin because_Cache lambdaFormation isect_memberEquality voidElimination voidEquality extract_by_obid hypothesis sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution unionEquality unionElimination sqleReflexivity isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed sqequalAxiom

Latex:
\mforall{}[a,b:Top].    (a  \mvee{}\msubb{}(a  \mwedge{}\msubb{}  b)  \msim{}  a  \mwedge{}\msubb{}  tt)



Date html generated: 2017_04_14-AM-07_29_49
Last ObjectModification: 2017_02_27-PM-02_58_28

Theory : bool_1


Home Index