Nuprl Lemma : bor-btrue

[b:𝔹]. (b ∨btt tt)


Proof




Definitions occuring in Statement :  bor: p ∨bq btrue: tt bool: 𝔹 uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x]
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf bor_tt_simp btrue_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination because_Cache dependent_functionElimination sqequalAxiom

Latex:
\mforall{}[b:\mBbbB{}].  (b  \mvee{}\msubb{}tt  \msim{}  tt)



Date html generated: 2017_04_14-AM-07_30_38
Last ObjectModification: 2017_02_27-PM-02_59_17

Theory : bool_1


Home Index