Nuprl Lemma : bor_band_absorption

[a,b:Top].  (a ∧b (a ∨bb) a ∧b tt)


Proof




Definitions occuring in Statement :  bor: p ∨bq band: p ∧b q btrue: tt uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T band: p ∧b q ifthenelse: if then else fi  bor: p ∨bq btrue: tt it: bfalse: ff all: x:A. B[x] implies:  Q top: Top has-value: (a)↓ prop:
Lemmas referenced :  top_wf equal_wf has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesisEquality thin because_Cache lambdaFormation isect_memberEquality voidElimination voidEquality extract_by_obid hypothesis sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution unionEquality unionElimination sqleReflexivity isectElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed sqequalAxiom

Latex:
\mforall{}[a,b:Top].    (a  \mwedge{}\msubb{}  (a  \mvee{}\msubb{}b)  \msim{}  a  \mwedge{}\msubb{}  tt)



Date html generated: 2017_04_14-AM-07_29_48
Last ObjectModification: 2017_02_27-PM-02_58_27

Theory : bool_1


Home Index