Nuprl Lemma : bxor_wf
∀[p,q:𝔹].  (p ⊕b q ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bxor: p ⊕b q
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bxor: p ⊕b q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
Lemmas referenced : 
bor_wf, 
band_wf, 
bnot_wf, 
assert_wf, 
assert_of_bnot, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
Error :universeIsType
Latex:
\mforall{}[p,q:\mBbbB{}].    (p  \moplus{}b  q  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-AM-11_31_12
Last ObjectModification:
2018_09_26-AM-11_16_09
Theory : bool_1
Home
Index