Nuprl Lemma : eq_int_eq_false_elim

[i,j:ℤ].  i ≠ supposing (i =z j) ff


Proof




Definitions occuring in Statement :  eq_int: (i =z j) bfalse: ff bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] nequal: a ≠ b ∈  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  equal-wf-base int_subtype_base bool_wf decidable__int_equal eq_int_eq_true btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut lambdaFormation thin sqequalHypSubstitution hypothesis independent_functionElimination voidElimination extract_by_obid isectElimination intEquality hypothesisEquality applyEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache Error :universeIsType,  baseApply closedConclusion baseClosed isect_memberEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  unionElimination independent_isectElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    i  \mneq{}  j  supposing  (i  =\msubz{}  j)  =  ff



Date html generated: 2019_06_20-AM-11_32_00
Last ObjectModification: 2018_09_26-AM-11_24_54

Theory : bool_1


Home Index