Nuprl Lemma : eq_int_eq_true_elim

[i,j:ℤ].  j ∈ ℤ supposing (i =z j) tt


Proof




Definitions occuring in Statement :  eq_int: (i =z j) btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nequal: a ≠ b ∈  not: ¬A implies:  Q false: False
Lemmas referenced :  equal-wf-base bool_wf int_subtype_base decidable__int_equal eq_int_eq_false btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  intEquality dependent_functionElimination unionElimination independent_isectElimination independent_functionElimination voidElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].    i  =  j  supposing  (i  =\msubz{}  j)  =  tt



Date html generated: 2019_06_20-AM-11_32_02
Last ObjectModification: 2018_09_26-AM-11_24_56

Theory : bool_1


Home Index