Nuprl Lemma : isect-valueall-type
∀[A:Type]. ∀[B:A ⟶ Type].  ((∃a:A. valueall-type(B[a])) 
⇒ valueall-type(⋂a:A. B[a]))
Proof
Definitions occuring in Statement : 
valueall-type: valueall-type(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
valueall-type: valueall-type(T)
, 
has-value: (a)↓
Lemmas referenced : 
subtype-valueall-type, 
exists_wf, 
valueall-type_wf, 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
isectEquality, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
dependent_functionElimination, 
isect_memberEquality, 
axiomSqleEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((\mexists{}a:A.  valueall-type(B[a]))  {}\mRightarrow{}  valueall-type(\mcap{}a:A.  B[a]))
Date html generated:
2016_05_13-PM-03_27_05
Last ObjectModification:
2015_12_26-AM-09_28_00
Theory : call!by!value_1
Home
Index