Nuprl Lemma : isect-valueall-type

[A:Type]. ∀[B:A ⟶ Type].  ((∃a:A. valueall-type(B[a]))  valueall-type(⋂a:A. B[a]))


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] implies:  Q isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] valueall-type: valueall-type(T) has-value: (a)↓
Lemmas referenced :  subtype-valueall-type exists_wf valueall-type_wf equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination isectEquality hypothesisEquality applyEquality independent_isectElimination sqequalRule lambdaEquality equalityTransitivity equalitySymmetry hypothesis dependent_functionElimination isect_memberEquality axiomSqleEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((\mexists{}a:A.  valueall-type(B[a]))  {}\mRightarrow{}  valueall-type(\mcap{}a:A.  B[a]))



Date html generated: 2016_05_13-PM-03_27_05
Last ObjectModification: 2015_12_26-AM-09_28_00

Theory : call!by!value_1


Home Index