Nuprl Lemma : W-to-not-not-sig

[A:Type]. ∀[B:A ⟶ Type].  (W(A;a.B[a])  (¬¬(a:A × B[a]))))


Proof




Definitions occuring in Statement :  W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] not: ¬A implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False prop: so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] all: x:A. B[x]
Lemmas referenced :  not_wf W_wf W-induction all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination lemma_by_obid isectElimination productEquality hypothesisEquality applyEquality lambdaEquality sqequalRule universeEquality dependent_functionElimination because_Cache functionEquality cumulativity isect_memberEquality rename dependent_pairEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W(A;a.B[a])  {}\mRightarrow{}  (\mneg{}\mneg{}(a:A  \mtimes{}  (\mneg{}B[a]))))



Date html generated: 2016_05_14-AM-06_17_36
Last ObjectModification: 2015_12_26-PM-00_03_45

Theory : co-recursion


Home Index