Nuprl Lemma : W-to-not-not-sig
∀[A:Type]. ∀[B:A ⟶ Type].  (W(A;a.B[a]) 
⇒ (¬¬(a:A × (¬B[a]))))
Proof
Definitions occuring in Statement : 
W: W(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
not_wf, 
W_wf, 
W-induction, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
productEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
rename, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W(A;a.B[a])  {}\mRightarrow{}  (\mneg{}\mneg{}(a:A  \mtimes{}  (\mneg{}B[a]))))
Date html generated:
2016_05_14-AM-06_17_36
Last ObjectModification:
2015_12_26-PM-00_03_45
Theory : co-recursion
Home
Index