Nuprl Lemma : Wcmp_transitivity
∀[A:Type]. ∀[B:A ⟶ Type].
∀w1,w2,w3:W(A;a.B[a]).
((((w1 < w2)
⇒ (w2 ≤ w3)
⇒ (w1 < w3)) ∧ ((w1 ≤ w2)
⇒ (w2 < w3)
⇒ (w1 < w3)))
∧ ((w1 ≤ w2)
⇒ (w2 ≤ w3)
⇒ (w1 ≤ w3)))
Proof
Definitions occuring in Statement :
Wcmp: Wcmp(A;a.B[a];leq)
,
W: W(A;a.B[a])
,
bfalse: ff
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
and: P ∧ Q
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
cand: A c∧ B
,
infix_ap: x f y
,
Wsup: Wsup(a;b)
,
Wcmp: Wcmp(A;a.B[a];leq)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
btrue: tt
,
guard: {T}
Lemmas referenced :
W-induction,
all_wf,
W_wf,
infix_ap_wf,
Wcmp_wf,
bfalse_wf,
btrue_wf,
Wsup_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
cumulativity,
because_Cache,
hypothesis,
productEquality,
functionEquality,
instantiate,
universeEquality,
independent_functionElimination,
lambdaFormation,
independent_pairFormation,
productElimination,
dependent_functionElimination,
dependent_pairFormation
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type].
\mforall{}w1,w2,w3:W(A;a.B[a]).
((((w1 < w2) {}\mRightarrow{} (w2 \mleq{} w3) {}\mRightarrow{} (w1 < w3)) \mwedge{} ((w1 \mleq{} w2) {}\mRightarrow{} (w2 < w3) {}\mRightarrow{} (w1 < w3)))
\mwedge{} ((w1 \mleq{} w2) {}\mRightarrow{} (w2 \mleq{} w3) {}\mRightarrow{} (w1 \mleq{} w3)))
Date html generated:
2016_05_14-AM-06_16_01
Last ObjectModification:
2015_12_26-PM-00_04_39
Theory : co-recursion
Home
Index