Nuprl Lemma : Wcmp_transitivity

[A:Type]. ∀[B:A ⟶ Type].
  ∀w1,w2,w3:W(A;a.B[a]).
    ((((w1 <  w2)  (w2 ≤  w3)  (w1 <  w3)) ∧ ((w1 ≤  w2)  (w2 <  w3)  (w1 <  w3)))
    ∧ ((w1 ≤  w2)  (w2 ≤  w3)  (w1 ≤  w3)))


Proof




Definitions occuring in Statement :  Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) bfalse: ff btrue: tt uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: and: P ∧ Q implies:  Q subtype_rel: A ⊆B all: x:A. B[x] cand: c∧ B infix_ap: y Wsup: Wsup(a;b) Wcmp: Wcmp(A;a.B[a];leq) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] btrue: tt guard: {T}
Lemmas referenced :  W-induction all_wf W_wf infix_ap_wf Wcmp_wf bfalse_wf btrue_wf Wsup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality cumulativity because_Cache hypothesis productEquality functionEquality instantiate universeEquality independent_functionElimination lambdaFormation independent_pairFormation productElimination dependent_functionElimination dependent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}w1,w2,w3:W(A;a.B[a]).
        ((((w1  <    w2)  {}\mRightarrow{}  (w2  \mleq{}    w3)  {}\mRightarrow{}  (w1  <    w3))  \mwedge{}  ((w1  \mleq{}    w2)  {}\mRightarrow{}  (w2  <    w3)  {}\mRightarrow{}  (w1  <    w3)))
        \mwedge{}  ((w1  \mleq{}    w2)  {}\mRightarrow{}  (w2  \mleq{}    w3)  {}\mRightarrow{}  (w1  \mleq{}    w3)))



Date html generated: 2016_05_14-AM-06_16_01
Last ObjectModification: 2015_12_26-PM-00_04_39

Theory : co-recursion


Home Index