Nuprl Lemma : Wleq_weakening2

[A:Type]. ∀[B:A ⟶ Type].  ∀w1,w2:W(A;a.B[a]).  w1 ≤  w2 supposing w1 w2 ∈ W(A;a.B[a])


Proof




Definitions occuring in Statement :  Wcmp: Wcmp(A;a.B[a];leq) W: W(A;a.B[a]) btrue: tt uimplies: supposing a uall: [x:A]. B[x] infix_ap: y so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y implies:  Q prop: Wcmp: Wcmp(A;a.B[a];leq) Wsup: Wsup(a;b) ifthenelse: if then else fi  btrue: tt bfalse: ff exists: x:A. B[x] guard: {T}
Lemmas referenced :  W-induction Wcmp_wf btrue_wf W_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename equalitySymmetry extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity independent_functionElimination functionEquality because_Cache dependent_functionElimination hyp_replacement Error :applyLambdaEquality,  universeEquality dependent_pairFormation

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}w1,w2:W(A;a.B[a]).    w1  \mleq{}    w2  supposing  w1  =  w2



Date html generated: 2016_10_21-AM-09_46_32
Last ObjectModification: 2016_07_12-AM-05_06_06

Theory : co-recursion


Home Index