Nuprl Lemma : Wleq_weakening2
∀[A:Type]. ∀[B:A ⟶ Type]. ∀w1,w2:W(A;a.B[a]). w1 ≤ w2 supposing w1 = w2 ∈ W(A;a.B[a])
Proof
Definitions occuring in Statement :
Wcmp: Wcmp(A;a.B[a];leq)
,
W: W(A;a.B[a])
,
btrue: tt
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
infix_ap: x f y
,
implies: P
⇒ Q
,
prop: ℙ
,
Wcmp: Wcmp(A;a.B[a];leq)
,
Wsup: Wsup(a;b)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
guard: {T}
Lemmas referenced :
W-induction,
Wcmp_wf,
btrue_wf,
W_wf,
all_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
equalitySymmetry,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
cumulativity,
independent_functionElimination,
functionEquality,
because_Cache,
dependent_functionElimination,
hyp_replacement,
Error :applyLambdaEquality,
universeEquality,
dependent_pairFormation
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}w1,w2:W(A;a.B[a]). w1 \mleq{} w2 supposing w1 = w2
Date html generated:
2016_10_21-AM-09_46_32
Last ObjectModification:
2016_07_12-AM-05_06_06
Theory : co-recursion
Home
Index