Nuprl Lemma : corec-subtype-corec
∀[F,G:Type ⟶ Type].  (corec(T.F[T]) ⊆r corec(T.G[T])) supposing (Monotone(T.G[T]) and (∀T:Type. (F[T] ⊆r G[T])))
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
type-monotone: Monotone(T.F[T])
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
type-monotone: Monotone(T.F[T])
, 
prop: ℙ
Lemmas referenced : 
corec-subtype-corec2, 
subtype_rel_wf, 
type-monotone_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
functionEquality
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (corec(T.F[T])  \msubseteq{}r  corec(T.G[T]))  supposing  (Monotone(T.G[T])  and  (\mforall{}T:Type.  (F[T]  \msubseteq{}r  G[T])))
Date html generated:
2016_05_14-AM-06_21_57
Last ObjectModification:
2015_12_26-PM-00_00_03
Theory : co-recursion
Home
Index