Nuprl Lemma : fix_wf_corec_partial_nat
∀[F:Type ⟶ Type]
  ∀[f:⋂T:Type. ((T ⟶ partial(ℕ)) ⟶ F[T] ⟶ partial(ℕ))]. (fix(f) ∈ corec(T.F[T]) ⟶ partial(ℕ)) 
  supposing ContinuousMonotone(T.F[T])
Proof
Definitions occuring in Statement : 
corec: corec(T.F[T])
, 
partial: partial(T)
, 
continuous-monotone: ContinuousMonotone(T.F[T])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
fix: fix(F)
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
fix_wf_corec-partial1, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
nat-mono, 
partial_wf, 
continuous-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectEquality, 
functionEquality
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[f:\mcap{}T:Type.  ((T  {}\mrightarrow{}  partial(\mBbbN{}))  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  partial(\mBbbN{}))].  (fix(f)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  partial(\mBbbN{})) 
    supposing  ContinuousMonotone(T.F[T])
Date html generated:
2016_05_14-AM-06_25_05
Last ObjectModification:
2015_12_26-AM-11_58_22
Theory : co-recursion
Home
Index