Nuprl Lemma : fix_wf_corec_partial_nat

[F:Type ⟶ Type]
  ∀[f:⋂T:Type. ((T ⟶ partial(ℕ)) ⟶ F[T] ⟶ partial(ℕ))]. (fix(f) ∈ corec(T.F[T]) ⟶ partial(ℕ)) 
  supposing ContinuousMonotone(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) partial: partial(T) continuous-monotone: ContinuousMonotone(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T fix: fix(F) isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop:
Lemmas referenced :  fix_wf_corec-partial1 nat_wf set-value-type le_wf int-value-type nat-mono partial_wf continuous-monotone_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality applyEquality cumulativity universeEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry axiomEquality isectEquality functionEquality

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type]
    \mforall{}[f:\mcap{}T:Type.  ((T  {}\mrightarrow{}  partial(\mBbbN{}))  {}\mrightarrow{}  F[T]  {}\mrightarrow{}  partial(\mBbbN{}))].  (fix(f)  \mmember{}  corec(T.F[T])  {}\mrightarrow{}  partial(\mBbbN{})) 
    supposing  ContinuousMonotone(T.F[T])



Date html generated: 2016_05_14-AM-06_25_05
Last ObjectModification: 2015_12_26-AM-11_58_22

Theory : co-recursion


Home Index