Nuprl Lemma : k-monotone_wf

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].  (k-Monotone(T.F[T]) ∈ ℙ')


Proof




Definitions occuring in Statement :  k-monotone: k-Monotone(T.F[T]) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T k-monotone: k-Monotone(T.F[T]) nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s]
Lemmas referenced :  uall_wf int_seg_wf isect_wf k-subtype_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination functionEquality natural_numberEquality setElimination rename because_Cache hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].    (k-Monotone(T.F[T])  \mmember{}  \mBbbP{}')



Date html generated: 2018_05_21-PM-00_09_10
Last ObjectModification: 2017_10_18-PM-02_33_14

Theory : co-recursion


Home Index