Nuprl Lemma : stream-map_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[s:stream(A)].  (stream-map(f;s) ∈ stream(B))
Proof
Definitions occuring in Statement : 
stream-map: stream-map(f;s), 
stream: stream(A), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
stream-map: stream-map(f;s), 
stream: stream(A), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isect2: T1 ⋂ T2, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
top: Top, 
bfalse: ff, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
stream_wf, 
fix_wf_corec_parameter, 
top_wf, 
stream-ext, 
subtype_rel_weakening, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
lambdaEquality, 
productEquality, 
unionElimination, 
equalityElimination, 
functionExtensionality, 
voidElimination, 
voidEquality, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
spreadEquality, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[s:stream(A)].    (stream-map(f;s)  \mmember{}  stream(B))
Date html generated:
2017_04_14-AM-07_47_30
Last ObjectModification:
2017_02_27-PM-03_17_30
Theory : co-recursion
Home
Index