Nuprl Lemma : subtype-corec2

[A,B:Type ⟶ Type].
  (let corec(T.A[T] ⟶ B[T]) in P ⊆(A[P] ⟶ B[P])) supposing (Continuous+(T.B[T]) and Continuous+(T.A[T]))


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) strong-type-continuous: Continuous+(T.F[T]) let: let uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B let: let so_lambda: λ2x.t[x] so_apply: x[s] type-continuous: Continuous(T.F[T]) guard: {T} prop:
Lemmas referenced :  nat_wf corec_subtype continuous-function subtype_rel_weakening corec_wf strong-type-continuous_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality productElimination independent_pairEquality axiomEquality hypothesis functionEquality cumulativity lemma_by_obid universeEquality rename lambdaEquality applyEquality independent_isectElimination isectEquality

Latex:
\mforall{}[A,B:Type  {}\mrightarrow{}  Type].
    (let  P  =  corec(T.A[T]  {}\mrightarrow{}  B[T])  in
              P  \msubseteq{}r  (A[P]  {}\mrightarrow{}  B[P]))  supposing 
          (Continuous+(T.B[T])  and 
          Continuous+(T.A[T]))



Date html generated: 2016_05_14-AM-06_21_50
Last ObjectModification: 2015_12_26-PM-00_00_09

Theory : co-recursion


Home Index