Nuprl Lemma : lifting-decide-less
∀[a,b,c,d,F,G:Top].
(case if (a) < (b) then c else d of inl(x) => F[x] | inr(x) => G[x] ~ if (a) < (b)
then case c
of inl(x) =>
F[x]
| inr(x) =>
G[x]
else case d
of inl(x) =>
F[x]
| inr(x) =>
G[x])
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
less: if (a) < (b) then c else d
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
,
so_apply: x[s1;s2;s3;s4]
,
so_lambda: λ2x.t[x]
,
top: Top
,
so_apply: x[s]
,
uimplies: b supposing a
,
strict4: strict4(F)
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
has-value: (a)↓
,
prop: ℙ
,
guard: {T}
,
or: P ∨ Q
,
squash: ↓T
Lemmas referenced :
lifting-strict-less,
top_wf,
equal_wf,
has-value_wf_base,
base_wf,
is-exception_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
baseClosed,
isect_memberEquality,
voidElimination,
voidEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
callbyvalueDecide,
hypothesis,
hypothesisEquality,
equalityTransitivity,
equalitySymmetry,
unionEquality,
unionElimination,
sqleReflexivity,
dependent_functionElimination,
independent_functionElimination,
baseApply,
closedConclusion,
decideExceptionCases,
inrFormation,
because_Cache,
imageMemberEquality,
imageElimination,
exceptionSqequal,
inlFormation,
sqequalAxiom
Latex:
\mforall{}[a,b,c,d,F,G:Top].
(case if (a) < (b) then c else d of inl(x) => F[x] | inr(x) => G[x] \msim{} if (a) < (b)
then case c
of inl(x) =>
F[x]
| inr(x) =>
G[x]
else case d
of inl(x) =>
F[x]
| inr(x) =>
G[x])
Date html generated:
2017_04_14-AM-07_21_04
Last ObjectModification:
2017_02_27-PM-02_54_37
Theory : computation
Home
Index