Nuprl Lemma : strictness-int_eq-left

[a,b,c:Top].  (if ⊥=a  then b  else ~ ⊥)


Proof




Definitions occuring in Statement :  bottom: uall: [x:A]. B[x] top: Top int_eq: if a=b  then c  else d sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ and: P ∧ Q all: x:A. B[x] implies:  Q uimplies: supposing a prop: not: ¬A false: False top: Top
Lemmas referenced :  value-type-has-value int-value-type equal_wf bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf bottom-sqle top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueIntEq sqequalHypSubstitution hypothesis baseClosed sqequalRule baseApply closedConclusion hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality lambdaFormation extract_by_obid isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination int_eqExceptionCases axiomSqleEquality sqleReflexivity isect_memberEquality voidEquality sqequalAxiom because_Cache

Latex:
\mforall{}[a,b,c:Top].    (if  \mbot{}=a    then  b    else  c  \msim{}  \mbot{})



Date html generated: 2017_04_14-AM-07_21_19
Last ObjectModification: 2017_02_27-PM-02_54_42

Theory : computation


Home Index