Nuprl Lemma : strictness-remainder-right

[a:Top]. (a rem ⊥ eval in ⊥)


Proof




Definitions occuring in Statement :  bottom: callbyvalue: callbyvalue uall: [x:A]. B[x] top: Top remainder: rem m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T has-value: (a)↓ and: P ∧ Q all: x:A. B[x] implies:  Q uimplies: supposing a prop: not: ¬A false: False
Lemmas referenced :  value-type-has-value int-value-type equal_wf bottom_diverge exception-not-bottom has-value_wf_base is-exception_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalSqle sqleRule thin divergentSqle callbyvalueRemainder sqequalHypSubstitution hypothesis sqequalRule baseApply closedConclusion baseClosed hypothesisEquality productElimination equalityTransitivity equalitySymmetry intEquality lambdaFormation extract_by_obid isectElimination independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination remainderExceptionCases axiomSqleEquality exceptionSqequal sqleReflexivity because_Cache callbyvalueCallbyvalue callbyvalueReduce callbyvalueExceptionCases sqequalAxiom

Latex:
\mforall{}[a:Top].  (a  rem  \mbot{}  \msim{}  eval  u  =  a  in  \mbot{})



Date html generated: 2017_04_14-AM-07_21_43
Last ObjectModification: 2017_02_27-PM-02_55_09

Theory : computation


Home Index