Nuprl Lemma : strictness-remainder-right
∀[a:Top]. (a rem ⊥ ~ eval u = a in ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
callbyvalue: callbyvalue, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
remainder: n rem m
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
not: ¬A
, 
false: False
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
equal_wf, 
bottom_diverge, 
exception-not-bottom, 
has-value_wf_base, 
is-exception_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueRemainder, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
remainderExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
sqleReflexivity, 
because_Cache, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueExceptionCases, 
sqequalAxiom
Latex:
\mforall{}[a:Top].  (a  rem  \mbot{}  \msim{}  eval  u  =  a  in  \mbot{})
Date html generated:
2017_04_14-AM-07_21_43
Last ObjectModification:
2017_02_27-PM-02_55_09
Theory : computation
Home
Index