Nuprl Lemma : choice-nat
ChoicePrinciple(ℕ)
Proof
Definitions occuring in Statement : 
choice-principle: ChoicePrinciple(T)
, 
nat: ℕ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
choice-iff-canonicalizable, 
nat_wf, 
trivial-quotient-true, 
canonicalizable_wf, 
canonicalizable-base, 
set_subtype_base, 
le_wf, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
productElimination, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
independent_isectElimination
Latex:
ChoicePrinciple(\mBbbN{})
Date html generated:
2016_12_12-AM-09_24_50
Last ObjectModification:
2016_11_11-PM-06_34_44
Theory : continuity
Home
Index