Nuprl Lemma : choice-nat

ChoicePrinciple(ℕ)


Proof




Definitions occuring in Statement :  choice-principle: ChoicePrinciple(T) nat:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  choice-iff-canonicalizable nat_wf trivial-quotient-true canonicalizable_wf canonicalizable-base set_subtype_base le_wf int_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin hypothesis productElimination independent_functionElimination isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality independent_isectElimination

Latex:
ChoicePrinciple(\mBbbN{})



Date html generated: 2016_12_12-AM-09_24_50
Last ObjectModification: 2016_11_11-PM-06_34_44

Theory : continuity


Home Index