Nuprl Lemma : eq-seg-nat-seq_wf

[n,m:finite-nat-seq()].  (eq-seg-nat-seq(n;m) ∈ 𝔹)


Proof




Definitions occuring in Statement :  eq-seg-nat-seq: eq-seg-nat-seq(n;m) finite-nat-seq: finite-nat-seq() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eq-seg-nat-seq: eq-seg-nat-seq(n;m)
Lemmas referenced :  finite-nat-seq_wf init-seg-nat-seq_wf band_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n,m:finite-nat-seq()].    (eq-seg-nat-seq(n;m)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-09_57_06
Last ObjectModification: 2016_01_16-PM-01_10_58

Theory : continuity


Home Index