Nuprl Lemma : eq-seg-nat-seq_wf
∀[n,m:finite-nat-seq()]. (eq-seg-nat-seq(n;m) ∈ 𝔹)
Proof
Definitions occuring in Statement :
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
,
finite-nat-seq: finite-nat-seq()
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
Lemmas referenced :
finite-nat-seq_wf,
init-seg-nat-seq_wf,
band_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[n,m:finite-nat-seq()]. (eq-seg-nat-seq(n;m) \mmember{} \mBbbB{})
Date html generated:
2016_05_14-PM-09_57_06
Last ObjectModification:
2016_01_16-PM-01_10_58
Theory : continuity
Home
Index