Nuprl Lemma : eq-seg-nat-seq_wf
∀[n,m:finite-nat-seq()].  (eq-seg-nat-seq(n;m) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
, 
finite-nat-seq: finite-nat-seq()
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq-seg-nat-seq: eq-seg-nat-seq(n;m)
Lemmas referenced : 
finite-nat-seq_wf, 
init-seg-nat-seq_wf, 
band_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n,m:finite-nat-seq()].    (eq-seg-nat-seq(n;m)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-09_57_06
Last ObjectModification:
2016_01_16-PM-01_10_58
Theory : continuity
Home
Index