Nuprl Lemma : intuitionistic-pigeonhole1

[A,B:ℕ ⟶ ℙ].
  ((∀s:StrictInc. ∃n:ℕA[s n])  (∀s:StrictInc. ∃n:ℕB[s n])  (∀s:StrictInc. ∃n:ℕ(A[s n] ∧ B[s n])))


Proof




Definitions occuring in Statement :  strict-inc: StrictInc nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] strict-inc: StrictInc prop: compose: g exists: x:A. B[x] and: P ∧ Q cand: c∧ B guard: {T}
Lemmas referenced :  unary-strong-almost-full-has-strict-inc nat_wf strict-inc_wf all_wf exists_wf compose-strict-inc and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesisEquality setElimination rename hypothesis independent_functionElimination because_Cache functionEquality cumulativity universeEquality dependent_functionElimination productElimination dependent_pairFormation independent_pairFormation

Latex:
\mforall{}[A,B:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  A[s  n])
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  B[s  n])
    {}\mRightarrow{}  (\mforall{}s:StrictInc.  \mexists{}n:\mBbbN{}.  (A[s  n]  \mwedge{}  B[s  n])))



Date html generated: 2016_05_14-PM-09_48_39
Last ObjectModification: 2015_12_26-PM-09_47_08

Theory : continuity


Home Index