Nuprl Lemma : compose-strict-inc

s,f:StrictInc.  (s f ∈ StrictInc)


Proof




Definitions occuring in Statement :  strict-inc: StrictInc compose: g all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T strict-inc: StrictInc uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] compose: g int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  lelt_wf int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf decidable__le nat_properties int_seg_properties strict-inc_wf false_wf int_seg_subtype_nat less_than_wf all_wf int_seg_wf nat_wf compose_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality lemma_by_obid isectElimination hypothesis hypothesisEquality natural_numberEquality sqequalRule lambdaEquality applyEquality independent_isectElimination independent_pairFormation because_Cache dependent_functionElimination productElimination unionElimination equalityTransitivity equalitySymmetry setEquality intEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}s,f:StrictInc.    (s  o  f  \mmember{}  StrictInc)



Date html generated: 2016_05_14-PM-09_47_32
Last ObjectModification: 2016_01_15-PM-10_54_26

Theory : continuity


Home Index