Nuprl Lemma : strict-inc_wf
StrictInc ∈ Type
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
strict-inc: StrictInc, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
all_wf, 
int_seg_wf, 
less_than_wf, 
int_seg_subtype_nat, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
setEquality, 
functionEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
because_Cache
Latex:
StrictInc  \mmember{}  Type
Date html generated:
2016_05_14-PM-09_47_18
Last ObjectModification:
2015_12_26-PM-09_47_36
Theory : continuity
Home
Index