Nuprl Lemma : nat-star-0_wf
0 ∈ ℕ*
Proof
Definitions occuring in Statement : 
nat-star-0: 0
, 
nat-star: ℕ*
, 
member: t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
nat-star: ℕ*
, 
nat-star-0: 0
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
Lemmas referenced : 
false_wf, 
le_wf, 
nat_wf, 
less_than_wf, 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_set_memberEquality, 
lambdaEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
voidElimination, 
functionEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
because_Cache, 
intEquality
Latex:
0  \mmember{}  \mBbbN{}*
Date html generated:
2016_12_12-AM-09_24_28
Last ObjectModification:
2016_11_18-AM-11_58_55
Theory : continuity
Home
Index