Nuprl Lemma : nat-star-0_wf
0 ∈ ℕ*
Proof
Definitions occuring in Statement :
nat-star-0: 0
,
nat-star: ℕ*
,
member: t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
nat-star: ℕ*
,
nat-star-0: 0
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
Lemmas referenced :
false_wf,
le_wf,
nat_wf,
less_than_wf,
all_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
dependent_set_memberEquality,
lambdaEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
hypothesis,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
imageElimination,
productElimination,
voidElimination,
functionEquality,
applyEquality,
functionExtensionality,
setElimination,
rename,
because_Cache,
intEquality
Latex:
0 \mmember{} \mBbbN{}*
Date html generated:
2016_12_12-AM-09_24_28
Last ObjectModification:
2016_11_18-AM-11_58_55
Theory : continuity
Home
Index