Nuprl Lemma : nat-star-0_wf

0 ∈ ℕ*


Proof




Definitions occuring in Statement :  nat-star-0: 0 nat-star: * member: t ∈ T
Definitions unfolded in proof :  member: t ∈ T nat-star: * nat-star-0: 0 nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: uall: [x:A]. B[x] all: x:A. B[x] less_than: a < b squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s]
Lemmas referenced :  false_wf le_wf nat_wf less_than_wf all_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_set_memberEquality lambdaEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination voidElimination functionEquality applyEquality functionExtensionality setElimination rename because_Cache intEquality

Latex:
0  \mmember{}  \mBbbN{}*



Date html generated: 2016_12_12-AM-09_24_28
Last ObjectModification: 2016_11_18-AM-11_58_55

Theory : continuity


Home Index