Nuprl Lemma : not-canonicalizable-baire-to-nat

¬⇃(canonicalizable((ℕ ⟶ ℕ) ⟶ ℕ))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] canonicalizable: canonicalizable(T) nat: not: ¬A true: True function: x:A ⟶ B[x]
Definitions unfolded in proof :  not: ¬A all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uall: [x:A]. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  choice-principle_wf not_wf equiv_rel_true true_wf canonicalizable_wf quotient_wf nat_wf choice-iff-canonicalizable not-choice-baire-to-nat
Rules used in proof :  cut lemma_by_obid hypothesis addLevel sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity impliesFunctionality dependent_functionElimination thin functionEquality productElimination independent_pairFormation independent_functionElimination isectElimination because_Cache sqequalRule lambdaEquality independent_isectElimination applyEquality cumulativity hypothesisEquality universeEquality instantiate

Latex:
\mneg{}\00D9(canonicalizable((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}))



Date html generated: 2016_05_14-PM-09_42_41
Last ObjectModification: 2016_01_13-AM-10_27_17

Theory : continuity


Home Index