Nuprl Lemma : not-canonicalizable-baire-to-nat
¬⇃(canonicalizable((ℕ ⟶ ℕ) ⟶ ℕ))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
canonicalizable: canonicalizable(T)
, 
nat: ℕ
, 
not: ¬A
, 
true: True
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
not: ¬A
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
choice-principle_wf, 
not_wf, 
equiv_rel_true, 
true_wf, 
canonicalizable_wf, 
quotient_wf, 
nat_wf, 
choice-iff-canonicalizable, 
not-choice-baire-to-nat
Rules used in proof : 
cut, 
lemma_by_obid, 
hypothesis, 
addLevel, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
impliesFunctionality, 
dependent_functionElimination, 
thin, 
functionEquality, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
applyEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
instantiate
Latex:
\mneg{}\00D9(canonicalizable((\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}))
Date html generated:
2016_05_14-PM-09_42_41
Last ObjectModification:
2016_01_13-AM-10_27_17
Theory : continuity
Home
Index