Nuprl Lemma : strict-inc-subtype
∀m:ℕ. (StrictInc ⊆r {s:ℕm ⟶ ℕ| strictly-increasing-seq(m;s)} )
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
strict-inc: StrictInc
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
guard: {T}
Lemmas referenced : 
strict-inc_wf, 
nat_wf, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
strictly-increasing-seq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
hypothesis, 
lemma_by_obid, 
dependent_set_memberEquality, 
hypothesisEquality, 
applyEquality, 
isectElimination, 
sqequalRule, 
natural_numberEquality, 
independent_isectElimination, 
independent_pairFormation, 
because_Cache, 
intEquality, 
dependent_functionElimination
Latex:
\mforall{}m:\mBbbN{}.  (StrictInc  \msubseteq{}r  \{s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(m;s)\}  )
Date html generated:
2016_05_14-PM-09_47_21
Last ObjectModification:
2015_12_26-PM-09_47_33
Theory : continuity
Home
Index