Nuprl Lemma : strict-inc-subtype

m:ℕ(StrictInc ⊆{s:ℕm ⟶ ℕstrictly-increasing-seq(m;s)} )


Proof




Definitions occuring in Statement :  strict-inc: StrictInc strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: subtype_rel: A ⊆B all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T strict-inc: StrictInc uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} guard: {T}
Lemmas referenced :  strict-inc_wf nat_wf subtype_rel_dep_function int_seg_wf int_seg_subtype_nat false_wf subtype_rel_self strictly-increasing-seq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut hypothesis lemma_by_obid dependent_set_memberEquality hypothesisEquality applyEquality isectElimination sqequalRule natural_numberEquality independent_isectElimination independent_pairFormation because_Cache intEquality dependent_functionElimination

Latex:
\mforall{}m:\mBbbN{}.  (StrictInc  \msubseteq{}r  \{s:\mBbbN{}m  {}\mrightarrow{}  \mBbbN{}|  strictly-increasing-seq(m;s)\}  )



Date html generated: 2016_05_14-PM-09_47_21
Last ObjectModification: 2015_12_26-PM-09_47_33

Theory : continuity


Home Index