Nuprl Lemma : strong-continuity2-half-squash-ext
∀[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity2(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)
Proof
Definitions occuring in Statement : 
strong-continuity2: strong-continuity2(T;F)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
true: True
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
bfalse: ff
, 
it: ⋅
, 
strong-continuity2-half-squash, 
implies-quotient-true2, 
trivial-quotient-true, 
basic-implies-strong-continuity2-ext, 
implies-quotient-true
Lemmas referenced : 
strong-continuity2-half-squash, 
implies-quotient-true2, 
trivial-quotient-true, 
basic-implies-strong-continuity2-ext, 
implies-quotient-true
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity2(T;F))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)
Date html generated:
2019_06_20-PM-02_51_18
Last ObjectModification:
2019_03_26-AM-06_46_06
Theory : continuity
Home
Index