Nuprl Lemma : strong-continuity2-half-squash-ext

[T:Type]. ∀F:(ℕ ⟶ T) ⟶ ℕ. ⇃(strong-continuity2(T;F)) supposing (T ⊆r ℕ) ∧ (↓T)


Proof




Definitions occuring in Statement :  strong-continuity2: strong-continuity2(T;F) quotient: x,y:A//B[x; y] nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] squash: T and: P ∧ Q true: True function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T bfalse: ff it: strong-continuity2-half-squash implies-quotient-true2 trivial-quotient-true basic-implies-strong-continuity2-ext implies-quotient-true
Lemmas referenced :  strong-continuity2-half-squash implies-quotient-true2 trivial-quotient-true basic-implies-strong-continuity2-ext implies-quotient-true
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}.  \00D9(strong-continuity2(T;F))  supposing  (T  \msubseteq{}r  \mBbbN{})  \mwedge{}  (\mdownarrow{}T)



Date html generated: 2019_06_20-PM-02_51_18
Last ObjectModification: 2019_03_26-AM-06_46_06

Theory : continuity


Home Index