Nuprl Lemma : strong-continuity3_functionality
∀[T,S:Type].  ∀e:T ~ S. ∀F:(ℕ ⟶ S) ⟶ ℕ.  (strong-continuity3(T;λf.(F ((fst(e)) o f))) 
⇒ strong-continuity3(S;F))
Proof
Definitions occuring in Statement : 
strong-continuity3: strong-continuity3(T;F)
, 
equipollent: A ~ B
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
pi1: fst(t)
, 
member: t ∈ T
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
, 
exists: ∃x:A. B[x]
, 
equipollent: A ~ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equipollent_wf, 
compose_wf, 
nat_wf, 
strong-continuity3_wf, 
strong-continuity3_functionality_surject
Rules used in proof : 
universeEquality, 
because_Cache, 
functionEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
sqequalRule, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,S:Type].
    \mforall{}e:T  \msim{}  S.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.
        (strong-continuity3(T;\mlambda{}f.(F  ((fst(e))  o  f)))  {}\mRightarrow{}  strong-continuity3(S;F))
Date html generated:
2017_09_29-PM-06_05_12
Last ObjectModification:
2017_09_04-AM-09_02_31
Theory : continuity
Home
Index