Nuprl Lemma : strong-continuity3_functionality

[T,S:Type].  ∀e:T S. ∀F:(ℕ ⟶ S) ⟶ ℕ.  (strong-continuity3(T;λf.(F ((fst(e)) f)))  strong-continuity3(S;F))


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) equipollent: B compose: g nat: uall: [x:A]. B[x] pi1: fst(t) all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: pi1: fst(t) member: t ∈ T and: P ∧ Q biject: Bij(A;B;f) exists: x:A. B[x] equipollent: B implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  equipollent_wf compose_wf nat_wf strong-continuity3_wf strong-continuity3_functionality_surject
Rules used in proof :  universeEquality because_Cache functionEquality functionExtensionality applyEquality lambdaEquality cumulativity sqequalRule hypothesis independent_functionElimination dependent_functionElimination hypothesisEquality isectElimination extract_by_obid introduction cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,S:Type].
    \mforall{}e:T  \msim{}  S.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.
        (strong-continuity3(T;\mlambda{}f.(F  ((fst(e))  o  f)))  {}\mRightarrow{}  strong-continuity3(S;F))



Date html generated: 2017_09_29-PM-06_05_12
Last ObjectModification: 2017_09_04-AM-09_02_31

Theory : continuity


Home Index