Nuprl Lemma : u-almost-full_wf
∀[A:ℕ ⟶ ℙ]. (u-almost-full(n.A[n]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
u-almost-full: u-almost-full(n.A[n])
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
u-almost-full: u-almost-full(n.A[n])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
strict-inc: StrictInc
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
all_wf, 
strict-inc_wf, 
quotient_wf, 
exists_wf, 
nat_wf, 
true_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (u-almost-full(n.A[n])  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-09_48_51
Last ObjectModification:
2015_12_26-PM-09_46_58
Theory : continuity
Home
Index