Nuprl Lemma : u-almost-full_wf

[A:ℕ ⟶ ℙ]. (u-almost-full(n.A[n]) ∈ ℙ)


Proof




Definitions occuring in Statement :  u-almost-full: u-almost-full(n.A[n]) nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T u-almost-full: u-almost-full(n.A[n]) so_lambda: λ2x.t[x] so_apply: x[s] strict-inc: StrictInc exists: x:A. B[x] prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  all_wf strict-inc_wf quotient_wf exists_wf nat_wf true_wf equiv_rel_true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality setElimination rename because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  (u-almost-full(n.A[n])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-09_48_51
Last ObjectModification: 2015_12_26-PM-09_46_58

Theory : continuity


Home Index