Nuprl Lemma : classical-all
∀[T:Type]. ∀[P:T ⟶ ℙ].  (∀x:T. {P[x]} 
⇐⇒ {∀x:T. {P[x]}})
Proof
Definitions occuring in Statement : 
classical: {P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
classical: {P}
, 
unit: Unit
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
it_wf, 
classical_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
axiomEquality, 
natural_numberEquality, 
setElimination, 
rename, 
universeEquality, 
functionEquality, 
cumulativity, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}x:T.  \{P[x]\}  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}x:T.  \{P[x]\}\})
Date html generated:
2016_05_13-PM-03_17_06
Last ObjectModification:
2016_01_06-PM-05_21_04
Theory : core_2
Home
Index