Nuprl Lemma : classical-implies

[A,B:ℙ].  uiff(A  {B};{A  B})


Proof




Definitions occuring in Statement :  classical: {P} uiff: uiff(P;Q) uall: [x:A]. B[x] prop: implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a classical: {P} unit: Unit implies:  Q prop: all: x:A. B[x] or: P ∨ Q not: ¬A false: False
Lemmas referenced :  it_wf classical-excluded-middle classical_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality axiomEquality natural_numberEquality hypothesis functionEquality hypothesisEquality lemma_by_obid isectElimination lambdaFormation lambdaEquality dependent_functionElimination productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality unionElimination independent_functionElimination voidElimination

Latex:
\mforall{}[A,B:\mBbbP{}].    uiff(A  {}\mRightarrow{}  \{B\};\{A  {}\mRightarrow{}  B\})



Date html generated: 2016_05_13-PM-03_16_42
Last ObjectModification: 2016_01_06-PM-05_21_09

Theory : core_2


Home Index