Nuprl Lemma : exists_functionality_wrt_implies

[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀x:S. {P[x]  Q[x]})  {(∃x:S. P[x])  (∃y:T. Q[y])} supposing T ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  equal_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality lambdaEquality applyEquality functionEquality instantiate universeEquality cumulativity productElimination dependent_pairFormation hyp_replacement dependent_functionElimination independent_functionElimination equalitySymmetry

Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:S.  \{P[x]  {}\mRightarrow{}  Q[x]\})  {}\mRightarrow{}  \{(\mexists{}x:S.  P[x])  {}\mRightarrow{}  (\mexists{}y:T.  Q[y])\}  supposing  S  =  T



Date html generated: 2016_05_13-PM-03_12_31
Last ObjectModification: 2016_01_06-PM-05_24_18

Theory : core_2


Home Index