Nuprl Lemma : exists_functionality_wrt_implies
∀[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀x:S. {P[x] 
⇒ Q[x]}) 
⇒ {(∃x:S. P[x]) 
⇒ (∃y:T. Q[y])} supposing S = T ∈ Type
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
instantiate, 
universeEquality, 
cumulativity, 
productElimination, 
dependent_pairFormation, 
hyp_replacement, 
dependent_functionElimination, 
independent_functionElimination, 
equalitySymmetry
Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].
    (\mforall{}x:S.  \{P[x]  {}\mRightarrow{}  Q[x]\})  {}\mRightarrow{}  \{(\mexists{}x:S.  P[x])  {}\mRightarrow{}  (\mexists{}y:T.  Q[y])\}  supposing  S  =  T
Date html generated:
2016_05_13-PM-03_12_31
Last ObjectModification:
2016_01_06-PM-05_24_18
Theory : core_2
Home
Index